Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems

Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems L. Bergamaschi & A. Martínez a Department of Civil, Environmental and Architectural Engineering, University of Padua, via Trieste 63, 35100 Padova, Italy b Department of Mathematics, University of Padua, via Trieste 63, 35100 Padova, Italy Accepted author version posted online: 14 Apr 2014.Published online...

متن کامل

Inexact Newton Preconditioning Techniques for Large Symmetric Eigenvalue Problems

This paper studies a number of Newton methods and use them to define new secondary linear systems of equations for the Davidson eigenvalue method. The new secondary equations avoid some common pitfalls of the existing ones such as the correction equation and the Jacobi-Davidson preconditioning. We will also demonstrate that the new schemes can be used efficiently in test problems.

متن کامل

Inexact Newton methods for inverse eigenvalue problems

In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...

متن کامل

Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems

An inexact Newton algorithm for large sparse equality constrained non-linear programming problems is proposed. This algorithm is based on an indefinitely preconditioned smoothed conjugate gradient method applied to the linear KKT system and uses a simple augmented Lagrangian merit function for Armijo type stepsize selection. Most attention is devoted to the termination of the CG method, guarant...

متن کامل

On restarting the Arnoldi method for large nonsymmetric eigenvalue problems

The Arnoldi method computes eigenvalues of large nonsymmetric matrices. Restarting is generally needed to reduce storage requirements and orthogonalization costs. However, restarting slows down the convergence and makes the choice of the new starting vector difficult if several eigenvalues are desired. We analyze several approaches to restarting and show why Sorensen’s implicit QR approach is g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algebra, Control & Optimization

سال: 2021

ISSN: 2155-3297

DOI: 10.3934/naco.2021012